Thursday, March 8, 2012

pinpoint brain location for tone sweeping



http://www.sciencedaily.com/releases/2012/03/120308132829.htm

In addition to finding the site where FM sweep selectivity begins, the researchers discovered how auditory neurons in the midbrain respond to these frequency changes. Combining physical measurements with computational models confirmed that the recorded neurons were able to selectively respond to FM sweeps based on their directions. For example, some neurons were more sensitive to upward sweeps, while others responded more to downward sweeps.

"Our findings suggest that neural networks in the midbrain can convert from non-selective neurons that process all sounds to direction-selective neurons that help us give meanings to words based on how they are spoken. That's a very fundamental process," says Wu.

Wu says he plans to continue this line of research, with an eye -- or ear -- toward helping people with hearing-related disorders. "We might be able to target this area of the midbrain for treatment in the near future," he says.

Knowing the direction of an FM sweep -- if it is rising or falling, for example -- and decoding its meaning, is important in every language. The significance of the direction of an FM sweep is most evident in tone languages such as Mandarin Chinese, in which rising or dipping frequencies within a single syllable can change the meaning of a word.

In their paper, the researchers pinpointed the brain region in rats where the task of sorting FM sweeps begins.

"This type of processing is very important for understanding language and speech in humans," says Guangying Wu, principal investigator of the study and a Broad Senior Research Fellow in Brain Circuitry at Caltech. "There are some people who have deficits in processing this kind of changing frequency; they experience difficulty in reading and learning language, and in perceiving the emotional states of speakers. Our research might help us understand these types of disorders, and may give some clues for future therapeutic designs or designs for prostheses like hearing implants."

No comments: